Search results

1 – 2 of 2
Article
Publication date: 31 July 2019

Mathieu Olivier and Olivier Paré-Lambert

This paper aims to present a fluid-structure coupling partitioned scheme involving rigid bodies supported by spring-damper systems. This scheme can be used with already existing…

Abstract

Purpose

This paper aims to present a fluid-structure coupling partitioned scheme involving rigid bodies supported by spring-damper systems. This scheme can be used with already existing fluid flow solvers without the need to modify them.

Design/methodology/approach

The scheme is based on a modified Broyden method. It solves the equations of solid body motion in which the external forces coming from the flow are provided by a segregated flow solver used as a black box. The whole scheme is implicit.

Findings

The proposed partitioned method is stable even in the ultimate case of very strong fluid–solid interactions involving a massless cylinder oscillating with no structural damping. The overhead associated with the coupling scheme represents an execution time increase by a factor of about 2 to 5, depending on the context. The scheme also has the advantage of being able to incorporate turbulence modeling directly through the flow solver. It has been tested successfully with URANS simulations without wall law, thus involving thin high aspect-ratio cells near the wall.

Originality/value

Such problems are known to be very difficult to solve and previous studies usually rely on monolithic approaches. To the authors' knowledge, this is the first time a partitioned scheme is used to solve fluid–solid interactions involving massless components.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 November 2020

Amir Hossein Rabiee and Mostafa Esmaeili

This study aims to explore an active control strategy for attenuation of in-line and transverse flow-induced vibration (FIV) of two tandem-arranged circular cylinders.

Abstract

Purpose

This study aims to explore an active control strategy for attenuation of in-line and transverse flow-induced vibration (FIV) of two tandem-arranged circular cylinders.

Design/methodology/approach

The control system is based on the rotary oscillation of cylinders around their axis, which acts according to the lift coefficient feedback signal. The fluid-solid interaction simulations are performed for two velocity ratios (V_r = 5.5 and 7.5), three spacing ratios (L/D = 3.5, 5.5 and 7.5) and three different control cases. Cases 1 and 2, respectively, deal with the effect of rotary oscillation of front and rear cylinders, while Case 3 considers the effect of applied rotary oscillation to both cylinders.

Findings

The results show that in Case 3, the FIV of both cylinders is perfectly reduced, while in Case 2, only the vibration of rear cylinder is mitigated and no change is observed in the vortex-induced vibration of front cylinder. In Case 1, by rotary oscillation of the front cylinder, depending on the reduced velocity and the spacing ratio values, the transverse oscillation amplitude of the rear cylinder suppresses, remains unchanged and even increases under certain conditions. Hence, at every spacing ratio and reduced velocity, an independent controller system for each cylinder is necessary to guarantee a perfect vibration reduction of front and rear cylinders.

Originality/value

The current manuscript seeks to deploy a type of active rotary oscillating (ARO) controller to attenuate the FIV of two tandem-arranged cylinders placed on elastic supports. Three different cases are considered so as to understand the interaction of these cylinders regarding the rotary oscillation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2